LINEAR SYSTEMS OF EQUATIONS
 AND MATRIX COMPUTATIONS

1. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS OF EQUATIONS

1.1 SIMPLE GAUSSIAN ELIMINATION METHOD

Consider a system of n equations in n unknowns,
$a_{11} x_{1}+a_{12} x_{2}+\ldots .+a_{1 n} x_{n}=y_{1}$
$a_{21} x_{1}+a_{22} x_{2}+\ldots .+a_{2 n} x_{n}=y_{2}$
$a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots .+a_{n n} x_{n}=y_{n}$
We shall assume that this system has a unique solution and proceed to describe the simple "Gaussian Elimination Method", (from now on abbreviated as GEM), Page 2 of 11 for finding the solution. The method reduces the system to an upper triangular system using elementary row operations (ERO).

Let $\mathrm{A}^{(1)}$ denote the coefficient matrix A .
$\mathrm{A}^{(1)}=\left(\begin{array}{llll}a_{11}^{(1)} & a_{12}^{(1)} & \ldots \ldots & a_{1 n}^{(1)} \\ a_{21}^{(1)} & a_{22}^{(1)} & \ldots \ldots & a_{2 n}^{(1)} \\ \ldots . . & \ldots \ldots & \ldots \ldots & \ldots \ldots \\ \ldots \ldots & \ldots \ldots & \ldots \ldots & \ldots \ldots \\ a_{n 1}^{(1)} & a_{n 2}^{(1)} & \ldots \ldots & a_{n n}^{(1)}\end{array}\right)$
where $\mathrm{a}_{\mathrm{ij}}{ }^{(1)}=\mathrm{a}_{\mathrm{ij}}$
Let
$\mathrm{y}^{(1)}=\left(\begin{array}{c}y_{1}^{(1)} \\ y_{2}^{(1)} \\ \vdots \\ y_{n}^{(1)}\end{array}\right)$
where $y_{i}{ }^{(1)}=y_{i}$
We assume $\mathrm{a}_{11}{ }^{(1)} \neq 0$
Then by ERO applied to $A^{(1)}$, (that is, subtracting suitable multiples of the first row from the remaining rows), reduce all entries below $\mathrm{a}_{11}{ }^{(1)}$ to zero. Let the resulting matrix be denoted by $\mathrm{A}^{(2)}$.
$\mathrm{A}^{(1)} \xrightarrow{R_{i}+m_{i 1}^{(1)} R_{1}} \mathrm{~A}^{(2)}$
where $\quad m_{i 1}^{(1)}=-\frac{a_{i 1}^{(1)}}{a_{11}^{(1)}} ; \quad \mathrm{i}>1$.
Note $A^{(2)}$ is of the form
$\mathrm{A}^{(2)}=\left(\begin{array}{ccccc}a_{11}^{(1)} & a_{12}^{(1)} & \ldots & \ldots & a_{1 n}^{(1)} \\ 0 & a_{22}^{(2)} & \ldots & \ldots & a_{2 n}^{(2)} \\ 0 & a_{32}^{(2)} & \ldots & \ldots & a_{3 n}^{(2)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & a_{n 2}^{(2)} & \ldots & \ldots & a_{n n}^{(2)}\end{array}\right)$
Notice that the above row operations on $\mathrm{A}^{(1)}$ can be effected by premultiplying $A^{(1)}$ by $M^{(1)}$ where
$\mathbf{M}^{(1)}=\left(\begin{array}{c|ccccc}1 & 0 & 0 & \cdots & 0 & 0 \\ \hline m_{21}^{(1)} & & & & & \\ m_{31}^{(1)} & & I_{n-1} & & & \\ \vdots & & & & & \\ m_{n 1}^{(1)} & & & & & \end{array}\right)$
($\mathrm{I}_{\mathrm{n}-1}$ being the $\mathrm{n}-1 \times \mathrm{n}-1$ identity matrix).
i.e.

$$
M^{(1)} A^{(1)}=A^{(2)}
$$

Let

$$
y^{(2)}=M^{(1)} y^{(1)}
$$

i.e.
$y^{(1)} \xrightarrow{R_{i}+m_{i 1} R_{1}} y^{(2)}$
Then the system $A x=y$ is equivalent to
$A^{(2)} x=y^{(2)}$
Next we assume
$a_{22}^{(2)} \neq 0$
and reduce all entries below this to zero by ERO
$\mathrm{A}^{(2)} \xrightarrow{R_{i}+m_{i 2}^{(2)}} \mathrm{A}^{(3)}$;
$m_{i 2}^{(2)}=-\frac{a_{i 2}^{(2)}}{a_{22}^{(2)}} ; \quad i>3$
Here

$$
M^{(2)}=\left(\begin{array}{cc|ccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\hline 0 & m_{32}^{(2)} & & \\
0 & m_{42}^{(2)} & & I_{n-2} & \\
\vdots & \vdots & & & \\
0 & m_{n 2}^{(2)} & &
\end{array}\right)
$$

and
$M^{(2)} A^{(2)}=A^{(3)} ; \quad M^{(2)} y^{(2)}=y^{(3)}$;
and $A^{(3)}$ is of the form

$$
A^{(3)}=\left(\begin{array}{ccccc}
a_{11}^{(1)} & a_{12}^{(1)} & \ldots & \ldots & a_{1 n}^{(1)} \\
0 & a_{22}^{(2)} & a_{23}^{(2)} & \ldots & a_{2 n}^{(2)} \\
0 & 0 & a_{33}^{(3)} & \ldots & a_{3 n}^{(3)} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
0 & 0 & a_{n 3}^{(3)} & \ldots & a_{n n}^{(3)}
\end{array}\right)
$$

We next assume $a_{33}^{(3)} \neq 0$ and proceed to make entries below this as zero. We thus get $M^{(1)}, M^{(2)}, \ldots, M^{(r)}$ where

$$
M^{(r)}=\left(\begin{array}{cccc|c}
1 & 0 & \cdots & 0 & \\
0 & 1 & \cdots & 0 & 0_{r \times(n-r)} \\
\vdots & \vdots & \vdots & \vdots & \\
0 & 0 & \cdots & 1 & \\
\hline 0 & 0 & \cdots & m_{r+1 r}^{(r)} & \\
0 & 0 & \cdots & m_{r+2 r}^{(r)} & I_{n-r} \\
\vdots & \vdots & \vdots & \vdots & \\
0 & 0 & \cdots & m_{n r}^{(r)} &
\end{array}\right)
$$

$$
M^{(r)} A^{(r)}=A^{(r+1)}=\left(\begin{array}{cccccc}
a_{11}^{(1)} & \ldots & \ldots & \ldots & \ldots & a_{1 n}^{(1)} \\
0 & a_{22}^{(2)} & \ldots & \ldots & \ldots & a_{2 n}^{(r)} \\
\vdots & 0 & a_{r r}^{(r)} & \ldots & \ldots & a_{r n}^{(r)} \\
\vdots & \vdots & 0 & a_{r+1 r+1}^{(r+1)} & \ldots & a_{r+1 n}^{(r+1)} \\
\vdots & \vdots & \vdots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & a_{n r+1}^{(r+1)} & \ldots & a_{n n}^{(r+1)}
\end{array}\right)
$$

$M^{(r)} y^{(r)}=y^{(r+1)}$
At each stage we assume $a_{r r}^{(r)} \neq 0$.
Proceeding thus we get,
$M^{(1)}, M^{(2)}, \ldots ., M^{(n-1)}$ such that
$\mathrm{M}^{(n-1)} \mathrm{M}^{(n-2)} \ldots . \mathrm{M}^{(1)} \mathrm{A}^{(1)}=\mathrm{A}^{(n)} \quad ; \quad \mathrm{M}^{(n-1)} \mathrm{M}^{(n-2)} \ldots . \mathrm{M}^{(1)} \mathrm{y}^{(1)}=\mathrm{y}^{(n)}$
where $\quad A^{(n)}=\left(\begin{array}{llll}a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1 n}^{(1)} \\ & a_{22}^{(2)} & \cdots & a_{2 n}^{(2)} \\ & & \\ & & \\ & & a_{n n}^{(n)}\end{array}\right)$
which is an upper triangular matrix and the given system is equivalent to
$A^{(n)} x=y^{(n)}$
Since this is an upper triangular, this can be solved by back substitution; and hence the system can be solved easily.

Note further that each $\mathrm{M}^{(r)}$ is a lower triangular matrix with all diagonal entries as 1. Thus determinant of $M^{(r)}$ is 1 for every r. Now,
$A^{(n)}=M^{(n-1)} \ldots M^{(1)} A^{(1)}$
Thus

$$
\begin{aligned}
& \operatorname{det} A^{(n)}=\operatorname{det} M^{(n-1)} \quad \operatorname{det} M^{(n-2)} \ldots \cdot \operatorname{det} M^{(1)} \quad \operatorname{det} A^{(1)} \\
& \operatorname{det} A^{(n)}=\operatorname{det} A^{(1)}=\operatorname{det} A \quad \text { since } A=A^{(1)}
\end{aligned}
$$

Now $\mathrm{A}^{(n)}$ is an upper triangular matrix and hence its determinant is $a_{11}^{(1)} a_{22}^{(2)} \cdots a_{n n}^{(n)}$. Thus $\operatorname{det} \mathrm{A}$ is given by
$\operatorname{det} A=a_{11}^{(1)} a_{22}^{(2)} \cdots a_{n n}^{(n)}$
Thus the simple GEM can be used to solve the system $A x=y$ and also to evaluate det A provided $a_{i i}^{(i)} \neq 0$ for each i .
Further note that $\mathrm{M}^{(1)}, \mathrm{M}^{(2)}, \ldots, \mathrm{M}^{(\mathrm{n-1)}}$ are lower triangular, and nonsingular as their det $=1$ and hence not zero. They are all therefore invertible and their inverses are all lower triangular, i.e. if $\ell=M^{(n-1)} M^{(n-2)} \ldots . M^{(1)}$ then \mathbb{E} is lower triangular and nonsingular and \mathbb{E}^{-1} is also lower triangular.

Now $\& A=\& A^{(1)}=M^{(n-1)} M^{(n-2)} \ldots . . M^{(1)} A^{(1)}=A^{(n)}$
Therefore $A=\mathbb{E}^{-1} A^{(n)}$
Now \mathbb{Q}^{-1} is lower triangular which we denote by L and $A^{(n)}$ is upper triangular which we denote by U , and we thus get the so called LU decomposition
$A=L U$
of a given matrix A - as a product of a lower triangular matrix with an upper triangular matrix. This is another application of the simple GEM. REMEMBER IF AT ANY STAGE WE GET $\mathrm{a}_{\mathrm{ij}}^{(1)}=0$ WE CANNOT PROCEED FURTHER WITH THE SIMPLE GEM.

EXAMPLE:

Consider the system
$x_{1}+x_{2}+2 x_{3}=4$
$2 x_{1}-x_{2}+x_{3}=2$
$x_{1}+2 x_{2}=3$
Here

$$
A=\left(\begin{array}{ccc}
1 & 1 & 2 \\
2 & -1 & 1 \\
1 & 2 & 0
\end{array}\right)
$$

$$
y=\left(\begin{array}{l}
4 \\
2 \\
3
\end{array}\right)
$$

$$
A^{(1)}=\left(\begin{array}{ccc}
1 & 1 & 2 \\
2 & -1 & 1 \\
1 & 2 & 0
\end{array}\right) \xrightarrow[R_{3}-R_{1}]{R_{2}-2 R_{1}}\left(\begin{array}{ccc}
1 & 1 & 2 \\
0 & -3 & -3 \\
0 & 1 & -2
\end{array}\right)=A^{(2)}
$$

$a_{11}^{(1)}=1 \neq 0$

$$
\left.\begin{array}{l}
m_{21}^{(1)}=-2 \\
m_{31}^{(1)}=-1
\end{array}\right\}
$$

$$
a_{22}^{(2)}=-3 \neq 0
$$

$M^{(1)}=\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 0 & 1\end{array}\right) \quad y^{(1)}=\left(\begin{array}{l}4 \\ 2 \\ 3\end{array}\right) \rightarrow\left(\begin{array}{c}4 \\ -6 \\ -1\end{array}\right)=y^{(2)}=M^{(1)} y^{(1)}$
$A^{(2)} \xrightarrow{R_{3}+\frac{1}{3} R_{2}}\left(\begin{array}{ccc}1 & 1 & 2 \\ 0 & -3 & -3 \\ 0 & 0 & -3\end{array}\right)=A^{(3)} \quad a_{33}^{(3)}=-3$
$m_{31}^{(2)}=1 / 3$
$M^{(2)}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 / 3 & 1\end{array}\right)$

$$
y^{(3)}=M^{(2)} y^{(2)}=\left(\begin{array}{c}
4 \\
-6 \\
-3
\end{array}\right)
$$

Therefore the given system is equivalent to $A^{(3)} x=y^{(3)}$,i.e.,

$$
\begin{aligned}
x_{1}+x_{2}+2 x_{3} & =4 \\
-3 x_{2}-3 x_{3} & =-6 \\
-3 x_{3} & =-3
\end{aligned}
$$

Back Substitution

$x_{3}=1$
$-3 x_{2}-3=-6 \Rightarrow-3 x_{2}=-3 \Rightarrow x_{2}=1$

$$
x_{1}+1+2=4 \Rightarrow x_{1}=1
$$

Thus the solution of the given system is,
$x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
The determinant of the given matrix A is
$a_{11}^{(1)} a_{22}^{(2)} a_{33}^{(3)}=(1)(-3)(-3)=9$.
Now
$\left(M^{(1)}\right)^{(-1)}=\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$
$\left(M^{(2)}\right)^{(-1)}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 / 3 & 1\end{array}\right)$
$e=\mathrm{M}^{(2)} \mathrm{M}^{(-1)}$
$\mathbb{Q}^{-1}=\left(M^{(2)} M^{(1)}\right)^{-1}=\left(M^{(1)}\right)^{-1}\left(M^{(2)}\right)^{-1}$
$=\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 / 3 & 1\end{array}\right)$
$L=e^{(-1)}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & -1 / 3 & 1\end{array}\right)$
$U=A^{(n)}=A^{(3)}=\left(\begin{array}{ccc}1 & 1 & 2 \\ 0 & -3 & -3 \\ 0 & 0 & -3\end{array}\right)$

Therefore A = LU i.e.,
$A=\left(\begin{array}{ccc}1 & 1 & 2 \\ 2 & -1 & 1 \\ 1 & 2 & 0\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & -1 / 3 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 1 & 2 \\ 0 & -3 & -3 \\ 0 & 0 & -3\end{array}\right)$
is the LU decomposition of the given matrix A .
We observed that in order to apply simple GEM we need $a_{r r}^{(r)} \neq 0$ for each stage r. This may not be satisfied always. So we have to modify the simple GEM in order to overcome this situation. Further, even if the condition $a_{r r}^{(r)} \neq 0$ is satisfied at each stage, simple GEM may not be a very accurate method to use. What do we mean by this? Consider, as an example, the following system:
$(0.000003) x_{1}+(0.213472) x_{2}+(0.332147) x_{3}=0.235262$
$(0.215512) x_{1}+(0.375623) x_{2}+(0.476625) x_{3}=0.127653$
$(0.173257) x_{1}+(0.663257) x_{2}+(0.625675) x_{3}=0.285321$
Let us do the computations to 6 significant digits.
Here,

$$
\begin{aligned}
& \mathrm{A}^{(1)}=\left(\begin{array}{lll}
0.000003 & 0.213472 & 0.332147 \\
0.215512 & 0.375623 & 0.476625 \\
0.173257 & 0.663257 & 0.625675
\end{array}\right) \\
& \mathrm{y}^{(1)}=\left(\begin{array}{l}
0.235262 \\
0.127653 \\
0.285321
\end{array}\right) \quad \mathrm{a}_{11}{ }^{(1)}=0.000003 \neq 0 \\
& m_{21}^{(1)}=-\frac{a_{21}^{(1)}}{a_{11}^{(1)}}=-\frac{0.215512}{0.000003}=-71837.3 \\
& m_{31}^{(1)}=-\frac{a_{31}^{(1)}}{a_{11}^{(1)}}=-\frac{0.173257}{0.000003}=-57752.3
\end{aligned}
$$

$$
M^{(1)}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-71837.3 & 1 & 0 \\
-57752.3 & 0 & 1
\end{array}\right) ; \quad y^{(2)}=M^{(1)} y^{(1)}=\left(\begin{array}{l}
0.235262 \\
-16900.5 \\
-13586.6
\end{array}\right)
$$

$A^{(2)}=M^{(1)} A^{(1)}=\left(\begin{array}{ccc}0.000003 & 0.213472 & 0.332147 \\ 0 & -15334.9 & -23860.0 \\ 0 & -12327.8 & -19181.7\end{array}\right)$
$a_{22}^{(2)}=-15334.9 \neq 0$
$m_{32}^{(2)}=-\frac{a_{32}^{(2)}}{a_{22}^{(2)}}=-\frac{-12327.8}{-15334.9}=-0.803905$
$M^{(2)}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -0.803905 & 1\end{array}\right)$
$y^{(3)}=M^{(2)} y^{(2)}=\left(\begin{array}{l}0.235262 \\ -16900.5 \\ -0.20000\end{array}\right)$
$A^{(3)}=M^{(2)} A^{(2)}=\left(\begin{array}{ccc}0.000003 & 0.213472 & 0.332147 \\ 0 & -15334.9 & -23860.0 \\ 0 & 0 & -0.50000\end{array}\right)$

Thus the given system is equivalent to the upper triangular system
$A^{(3)} x=y^{(3)}$
Back substitution yields,

This compares poorly with the correct answers (to 10 digits) given by
$x_{1}=0.6741214694$
$\left.x_{2}=0.0532039339 .1\right\}$
$x_{3}=-0.9912894252$
Thus we see that the simple Gaussian Elimination method needs modification in order to handle the situations that may lead to $a_{r r}^{(r)}=0$ for some r or situations as arising in the above example. In order to do this we introduce the idea of Partial Pivoting in the next section.

